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Abstract: Droughts are among the more costly natural hazards, and drought risk analysis has
become urgent for the proper planning and management of water resources in grassland ecosystems.
We chose Songnen grassland as a case study, used a standardized precipitation evapotranspiration
index (SPEI) to model drought characteristics, employed run theory to define the drought event,
and chose copula functions to construct the joint distribution for drought variables. We applied two
kinds of return periods to conduct a drought risk assessment. After evaluating and comparing several
distribution functions, drought severity (DS) was best described by the generalized extreme value
(GEV) distribution, whereas drought duration (DD) was best fitted by gamma distribution. The root
mean square error (RMSE) and Akaike Information Criterion (AIC) goodness-of-fit measures to
evaluate their performance, the best-performing copula is Frank copula to model the joint dependence
structure for each drought variables. The results of the secondary return periods indicate that
a higher risk of droughts occurs in Keshan county, Longjiang county, Qiqiha’er city, Taonan city,
and Baicheng city. Furthermore, a relatively lower risk of drought was found in Bei’an city, Mingquan
county, Qinggang county, and qian’an county, and also in the Changling county and Shuangliao city.
According to the calculation of the secondary return periods, which considered all possible scenarios
in our study, we found that the secondary return period may be the best indicator for evaluating
grassland ecosystem drought risk management.

Keywords: drought risk analysis; the secondary return period; run theory; copula

1. Introduction

Droughts are among the most cost hazards of natural disasters due to the fact that their impacts are
significant and widespread, affecting many economic sectors and people at any one time. The damage
of grassland drought has been a challenging issue in prairies and has been receiving increasing attention
from all over the world. China’s grassland is located in the Northern and Western regions, where annual
precipitation is less than 400 mm and livestock disasters often occur because of frequent droughts.
The extent of the harm is at the head of all kinds of meteorological droughts. The frequency of drought
in Inner Mongolia appeared to be up to 65.8%, according to Inner Mongolia drought disaster historical
statistics data. The annual average drought disaster areas reach 24.59 million hectares, and drought rate
reaches up to 39.47%; further, the average annual mortality rate of livestock is 4.7% due to drought [1].
The capacity for the prevention and mitigation of drought is relatively low, and farmer’s lack of
knowledge of prevention and mitigation for disaster, to a certain extent, increased the losses caused
by disasters in the prairie area of China. Therefore, the grassland drought monitoring and grassland
drought risk analysis have become a very urgent task. It is great significance to protecting grassland
ecological security and promoting sustainable socio-economic development in prairie areas.
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At present, there are a number of drought indexes for drought analysis, monitoring, and assessment.
These indexes include the Palmer drought severity index (PDSI) [2], based on a soil water balance
equation; the standard precipitation index (SPI) [3], which is based on precipitation and provides
a measure for water supply; the moisture anomaly index (Z-index) [4], based on the water balance
equation; the effective drought index (EDI) [5], based on the water accumulation with the weighting
function of time passage; the aggregated drought index (ADI) [6], based on monthly (measured)
input data; the composite index (CI) [7], based on potential evapotranspiration accumulating
methods; the reconnaissance drought index (RDI ) [8], based both on precipitation and on potential
evapotranspiration; the standard precipitation evapotranspiration index (SPEI) [9]; and so on.
Each index has its advantages and disadvantages, and different research areas should select appropriate
indicators. The SPEI integrates the advantages of PDSI to changes in evaporation demand (caused by
temperature fluctuations and trends) with the simplicity of operation and the multi-scale of the SPI.
The SPEI is a comparatively new index and is mainly used in detecting, monitoring, and evaluating
the results of global warming on extreme climate event (i.e., drought) conditions. Therefore, we have
selected the SPEI as the drought analysis indicator for characterizing drought events.

The copula probability distribution function as a correlation analysis and multivariate modeling is
suitable for building the joint distribution of marginal distribution, has unique advantages for dealing
with non-linear, non-symmetrical data, and is an effective means for the description of the variables’
correlation. Since the 21st century, copula functions have been widely used in the finance, meteorology,
hydrology, and natural disaster risk research fields. Shiau [10] first used six kinds of Archimedean
copula function to link up the marginal distribution of drought duration and drought intensity and
then established joint probability distributions to conduct a frequency analysis of meteorological
drought events. Song and Singh [11] used five kinds of meta-elliptical copula functions to construct
the joint probability of drought duration, interval, and intensity, and compared them with the results
of Archimedean copula analysis. In a recent drought study, the copula function was used to build
the joint distribution functions of drought duration and drought severity, and then to calculate the
joint distribution of drought duration and severity and analysis joint return period [12–14]. There is
a strong relationship between drought duration and drought severity, and the univariate analysis of
drought frequency does not completely characterize drought events. The bivariate frequency analysis
can be used as an effective tool for considering the drought occurrence and connecting the drought
characteristics simultaneously. In addition, the joint multivariate models of droughts are hard to create,
due to the fact that the drought duration and severity always comply with different distributions.
Furthermore, both drought duration and severity play a significant role to drought frequency analysis
and management, and it is necessary to calculate a joint return period for drought characteristics.
Due to this reason, copulas were applied to connect fitted univariate distributions and then construct
a bivariate joint distribution.

There have been numerous studies conducted for drought frequency analysis using copula
functions in different parts of the world [15–18]. Therefore, we chose Songnen grassland as a case study,
using the standardized precipitation evapotranspiration index (SPEI) to model drought characteristics
and employ run theory to define the drought event and explore drought regularity within the study
area. The copulas are applied to construct the joint distribution function for the marginal distribution
function of drought severity and duration. In addition, the value of variables achieved in a copula
function is varied as a curve and we assume that events that have the same return period have the
same disaster; the return period of a drought event that is greater than or equal to one return period
value has great significance for drought risk analysis. In addition, the proper design and rational use
of water resource under drought conditions need the accurate estimation of the return periods for
drought events, which are mostly characterized by high severities [19]. Therefore, Salvadori and De
Michele [20] defined the secondary return period, which will be conducted in this study for drought
risk analysis.
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The remaining sections are designed as follows: First, the descriptions of the study area and data
sources are presented. Then, the definition of the copula function and its properties and the details of
copulas adopted in this study are presented. Then, the details of drought characteristics, the definition
of drought events by applying run theory and the procedures for the calculation of the SPEI and the
estimation for bivariate return periods and the secondary return period using copula are explained.
Later, the application of the methodology to the study region is presented and the results are discussed.
Finally, brief conclusions of this study are presented.

2. Study Area and Data Sources

Songnen grassland is taken up as case study, which is drought vulnerability area in northeastern
China. Songnen grassland is located between 43◦30′–48◦05′N latitudes and 122◦12′–126◦20′E longitude
with 10.32 million km2 area. The location map of the study area and meteorological stations are given
in Figure 1. It is surrounded by mountains on three sides, i.e., the Da Hinggan Mountains in the West,
the Yilehuli Mountain and Xiaoxing ‘an mountain in the North, Hangguangcai mountains in East,
Songliao rivers watershed in the South. It is alluvial plains formed with Songhua River, Nenjiang
and Taoer River and Huolinhe River. The elevation is 150–250m above. Songnen grassland is a main
part of the northeast China plain, which is among China’s three Great Plains. Songnen grassland in
northeastern China has arid climate condition with annual mean precipitation of 350–500mm and
drought degree reached 1.1–1.5. The annual evaporation in this area is 2–3 times more than annual
precipitation. In addition, the precipitation in this area is not only low but also uncertain. Due to the
lack of precipitation, this region faces frequent severe droughts.Sustainability 2019, 11, x FOR PEER REVIEW 4 of 18 
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Figure 1. The location map of the research area and spatial distribution of meteorological stations.

The meteorological data used in this paper is derived from the China Meteorological Science Data
Sharing Service Network (http://cdc.cma.gov.cn/) [21] and the ground weather data set provided by
the Jilin Provincial Meteorological Bureau. There are 36 total meteorological stations in the study area.
In this paper, we use RClimDex method and the standard data quality control (QC) process to check

http://cdc.cma.gov.cn/
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the weather data set covering from 1960 to 2014. The meteorological station which have negative daily
temperature and precipitation amounts were exclude, based on the principle of the daily minimum
temperature is larger than daily maximum temperature [22]. And, we apply the double-mass curve
method to check the homogeneity for the both temperature data and precipitation data series for each
meteorological station [23]. According to homogeneity result, the shortness of record years and missing
dataset, 15 stations of Songnen grassland which have complete data from 1960 to 2014 are selected
(Figure 1; Table 1). This data category includes the daily precipitation (mm), average temperature (◦C),
maximum temperature (◦C), minimum temperature (◦C), sunshine hours (h), wind speed (m/s) and
average relative humidity (%) of each meteorological station.

Table 1. The basic information of each meteorological station in the study area.

NO. Station Name Station NO. Longitude (◦) Latitude (◦) DEM (m)

1 Beian 50656 126.52 48.28 269.70
2 Keshan 50658 125.88 48.05 234.60
3 Fuyu 50742 124.48 47.80 162.70
4 Qiqihaer 50745 123.92 47.38 147.10
5 Mingshui 50758 125.90 47.17 247.20
6 Tailai 50844 123.42 46.40 149.50
7 Anda 50854 125.32 46.38 149.30
8 Baicheng 50936 122.83 45.63 155.30
9 Qianan 50948 124.02 45.00 146.30

10 Qianguoerluosi 50949 124.87 45.08 136.20
11 Tongyu 54041 123.07 44.78 149.50
12 Changling 54049 123.97 44.25 188.90
13 Fuyu 54063 126.00 44.97 196.80
14 Changchun 54161 125.22 43.90 236.80
15 Shuangliao 54142 123.53 43.50 114.90

3. Methodology

3.1. The Standardized Precipitation Evapotranspiration Index (SPEI)

Vicente-serrano [24] et al. constructed the SPEI, which has both the advantages of the SPI and the
Palmer Drought Index (PDSI). The SPEI was derived from the SPI, which can be computed in different
time scales to describe the different drought characteristics. Advanced from the SPI, the SPEI considers
both the impact of precipitation and the potential evapotranspiration factors. The SPEI was widely
applied on a monthly scale, daily scale and could identify the number of months and days in a drought
event. The SPEI index is an internationally popular drought monitoring index. The main calculation
process and detail expression is shown in [9]. This paper uses the SPEI package of R language to
calculate SPEI-1, SPEI-3, SPEI-6 and SPEI-12 time scales.

3.2. Run Theory

Run theory is among the most effective methods for analyzing time series, which is proposed
by Yevjevich [25]. The run theory refers to the occurrence of another type of event in the process
of continuous occurrence of similar events, such as droughts, continuous rain-free days, rainy days,
and alternating natural waters. This study uses the run theory to identify drought events which are
characterized by drought duration and severity. As shown in Figure 2, a drought event is defined as
the SPEI value is lower than a specified threshold (−0.5) in the aggregation time period. As an indicator
of drought, the SPEI can consider a negative run as a drought event, a drought event from start to
finish as a drought duration (DD), and a negative run as the drought severity (DS) of the drought event.
Figure 2 displays the schematic diagram of the process of the identification of drought events using
run theory and the calculation formula is as follows [26]:
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S =

∣∣∣∣∣∣∣−
d∑

i=1

SPEIi

∣∣∣∣∣∣∣ < −0.5 (1)
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In this paper, we identify the grassland drought event based on the run theory during growing
season from April to September, assuming the SPEI index threshold R0, R1 and R2. The process of
the identification of drought events is shown in Figure 2 and the identification step of the drought
event is as follows. Firstly: preliminary judgment of the drought events. The SPEI consequence was
divided by the threshold value R1. When the SPEI value is less than R1, the preliminary judgment
for this period of drought is a, b, c, d and e. Secondly: handling small drought events. According to
the first step preliminary result, we can filter the small drought events based on the threshold value
R2. The drought event last only one unit time (such as a, d), and the SPEI value is lower than the
threshold value R2 (such as a), we defined this drought event as a small drought event and ignored in
this study. For a drought event with an SPEI value that is less than R2 (such as d), it is regarded as
one drought event. Finally, merging drought events. The interval time last only one month between
several drought events (such as b and c, d and e) and the SPEI value is more than R0 (such as f), we can
combine these two drought events into one drought event. If the SPEI value (such as g) is greater than
R0, we can consider them independent drought events (such as d, e). Therefore, we identify 3 scales of
drought events according the above steps as shown in Figure 2.

3.3. Copula

The copula function was first proposed by Sklar [27], which described a useful tool for linking
multidimensional distribution with marginal distribution and constructing multivariate distribution
functions. Copulas have been widely used to model bivariate distribution in hydrology, in meteorology,
in finance, and more recently natural disaster risk management fields. More details about the
mathematical details, assumptions, justifications and characteristics of various copula families can be
found in references [28–30]. The specific calculation process is shown in references [31–34]. We have
greater convenience to choose more suitable univariate distributions which are well fitted to the
observed dataset and relatively simple to model a multivariate distribution, by using copulas.

The copula function states that if FX,Y(x, y) is a multivariate distribution function of two correlated
random variables of X and Y with marginal distributions FX(x) and FY(y), respectively, then there
exists a copula C such that:
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FX,Y(x, y) = C(FX(x), FY(y)) = C(u, v) (2)

Copulas have many kinds of copula families that have been used to construct drought events.
In this study, we selected the Frank, Gumbel–Hougaard (GH) and Clayton copula functions, which have
been widely used to construct the joint distribution of droughts [13,35], to construct the multivariate
drought model.

Define u = FD(d) and v = FS(s), and then those copula functions can be explained as follows:

FD,S(d, s) = C(u, v) = exp
{
−

[
(− lnu)θ + (− lnv)

1
θ

]}
(3)

FD,S(d, s) = C(u, v) =
(
u−θ + v−θ

)−1
θ (4)

FD,S(d, s) = C(u, v) = −
1
θ

ln

1 +
(
e−θu

− 1
)
+

(
e−θv
− 1

)
(e−θ − 1)

 (5)

The relationship θ parameter with the Kendall correlation coefficient τ is shown in the Table 2.

τ =
(
C2

i

) n∑
i< j

sgn
[(

di − d j
)(

si − s j
)]

(6)

where (di, si) is the joint distribution for the value of drought duration and drought severity.

sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

(7)

The fitting accuracy of the results of the three copulas was evaluated by the root mean square
error (RMSE) [36] and Akaike Information Criterion (AIC) [37,38].

Table 2. Relationship between θ and τ for different copula types.

Copula Types The Relationship between θ and τ

G–H τ = 1− 1
θ (θ ≥ 1)

Clayton τ = θ
(θ+2) (θ>0)

Frank τ = 1 + 4
θ

(
1
θ

∫ θ
0

1
et−1 dt− 1

)
(θ , 0)

A suitable marginal distribution model well fitted to each drought property is required before
building the bivariate copula model. Therefore, we used SPEI values to separate and selected
gamma distribution and Generalized Extreme Value distribution (GEV) for drought duration and
severity characteristics, respectively, which are frequently used to fit the distribution of droughts
and floods [10,39]. Then, the parameters of the two distributions were evaluated by the maximum
likelihood method to select the appropriate distribution for each SPEI series. Finally, we selected
the probability distribution function, with the highest goodness-of-fit for each station based on the
Kolmogorov–Smirnov (K–S) goodness-of-fit test [40]. In this study, we choose a confidence level 95%
to judge fit result. We found that drought severity is best described by the generalized extreme value
(GEV) distribution, whereas drought duration is best fitted by gamma distribution. In the previous
study, most scholars [41,42] argue that exponential distribution is more suitable to fit the frequency
of drought duration, but the result shows that gamma distribution is a better fit than exponential
distribution in Songnen Grassland, implying that the best marginal distribution function for different
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study regions may be different. Therefore, the choice of the correct marginal distribution function
before drought risk analysis is necessary.

3.4. Return Periods

3.4.1. The Bivariate Return Periods

The return period is referred to as the equal time or mean inter-arrival time between two
consecutive intervals of drought events. More details about return periods are introduced and outlined
in references [20,43–45]. In this paper, the return period of drought severity (s) and drought duration
(D) can be expressed as follows:

T(D) =
E(L)

P(D > d)
=

E(L)
1− FD(d)

(8)

T(S) =
E(L)

P(S > s)
=

E(L)
1− FS(s)

(9)

where T(D) is the return period for drought duration, T(S) is the return period of drought severity,
and E(L) is the exceeded drought inter-arrival time.

There are two scenarios of the bivariate return period of drought risk in terms of drought duration
and drought severity distribution, which are defined as T∪(d, s) and T∩(d, s). Then, the bivariate return
periods related to these scenarios are computed as follows [46]:

T∪(d, s) =
E(L)

P(D > d∪ S > s)
=

E(L)
1− FD,S(d, s)

=
E(L)

1−C(FD(d), FS(s))
(10)

T∩(d, s) =
E(L)

P(D > d∩ S > s)
=

E(L)
1− FD(d) − FS(s) + C(FD(d), FS(s))

(11)

where T∪(d, s) is the return period of D ≥ d or S ≥ s, and T∩(d, s) is the return period of D ≥ d and
S ≥ s. The bivariate return period of drought duration and drought severity can be easily estimated by
the above series of formulas respectively.

3.4.2. The Secondary Return Periods

For a given copula function, different variable combinations of the boundary value probability
distribution function may have the same cumulative probability q, namely C(ux, vx) = q and C

(
uy, vy

)
=

q. In the drought risk analysis research field, researchers are more interested in supercritical conditions
like C(u, v) > q for a random event (u, v) when the cumulative probability q as an indicator and the
indicator affects the same result. Salvadori [47] defines the secondary return periods by Kendall
distribution functions (KC) expressed as follow:

KC(q) = P(C(u, v) ≤ q) (12)

The KC expression of Archimedean copula is:

KC(q) = q−
ϕ(q)
ϕ′(q+)

(13)

where ϕ′(q+) is the right differential of ϕ′(q+).
The expression of “or” the joint return period

(
ρ∨q

)
of the secondary return period is:

ρ∨q =
µT

1−KC(q)
(14)
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They also indicated that the secondary return period gives precise information for conducting
a risk analysis and may also be a useful tool for conducting numerical simulations [8]. In this study,
we select the secondary return period for the risk analysis of drought for Songnen grassland in
northeastern China.

3.5. Inverse Distance Weighted Interpolation Method

We can approximate the more complex relationship between factors through the construct function
of the interpolation method. It is a generalized least squares regression method. The Inverse Distance
Weighted (IDW) is among the most important content of geostatistics science and among the most
popular interpolation methods. The IDW method is based on a similar procedure to decide the
weighted average by the distance between the interpolation points and the samples. The formula is
expressed as follows:

Z(x) =
n∑

i=1

λi•Z(xi) (15)

where Z(χ) is the calculated value, n is the sample scale, and λi is the weight of a sample point.

4. Results

4.1. Analysis of Drought Characteristics

In this study, we used Qian’an station as a case study in order to clarify and validate the
computation procedure. Based on the research of Songnen grassland by Professor Zhu Yancheng and
Professor Li Jiandong, the grass growing stage generally lasts from April to October. The SPEI-6 scales
calculated by using the six months temperature and the precipitation sequence data from April to
October which covers the entire grass growing season of each meteorological station, and researcher
found that the SPEI-6 scale is more suitable for the analysis of drought [48]. Therefore, the SPEI-6 scale
was selected to identify the drought events during the growth period of Songnen grassland, and the
run theory was used to define the statistics for severe drought events, which is SPEI < −0.5.

The SPEI can depict the succession of drought events at different time scales. Furthermore,
according to the different grades of drought (Table 1), it can assess the characteristics of different types
of drought changes at different time scales in the research area. As can be seen from Figure 3, drought
events change frequently in a short time period of one and three months, and are very sensitive
to changes in short-scale temperature and precipitation (Figure 3a,b). The larger SPEI time scale,
the longer alternate frequency of drought events interval has occurred. Figure 3c,d shows that drought
events have weak responses to short-scale temperature and precipitation in six and twelve months,
and drought event changes are relatively stable. Songnen Grassland suffers alternating periods of
drought about four years, such as in 1968–1972 and 2001–2005, with six years of drought periods
occurring in 1979–1985.

Simultaneously, the spatial distribution of drought characteristics, i.e., average duration and
severity, maximum severity and number of drought events, corresponds to the SPEI values of a 6
month time interval as shown in Figure 4 as well. Figure 4a shows the spatial patterns of average
drought duration calculated by the SPEI values of a 6 month time interval. There are more significant
differences between the spatial distributions of average drought duration compared with other drought
characteristics. The spatial patterns of average drought duration indicate that the Qian’an county
tend to experience relatively long-lasting drought events. The spatial patterns of average drought
severity indicate that the middle parts of the grassland experienced more intense drought events, i.e.,
Mingshui county, Qinggang city, Daqing city and Zhaoyuan county. And severe drought was also
found in Bei’an city. However, fewer intense droughts are seen in Baicheng city, Taonan city, Changling
county and Shuangliao city (Figure 4b). As shown in Figure 4c, it is specifically obvious that Bai’an
city has experienced more severe droughts. No obvious spatial distribution for the maximum severity
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characteristic of drought events was found. For the number of drought events, a higher number of
droughts was found in Keshan county, Baicheng city, Taonan city, Changling county and Shuangliao
city, while a lower number of droughts was seen in Songyuan city and Bei’an city for SPEI-6 month
series (Figure 4d).
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4.2. Correlation between Drought Duration and Drought Severity

By calculating the Spearman’s rank correlation coefficient, with details in ref [49], of drought
duration and drought severity, we found that there is a strong correlated relationship for 15
meteorological stations in the period 1960–2014 in Songnen grassland in northeastern China.
The correlation coefficient between drought duration and drought severity is 0.7584–0.6505, among them,
the Mingshui station has the highest correlation, which is 0.7584, and Qianguo station has the lowest
correlation coefficient, which is 0.6505. The scatter distribution of the drought duration and drought
severity of Qian’an station is shown in Figure 5.
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4.3. The Selection of the Appropriate Copula

Because different copula functions represent different related association structures, and the choice
of the copula function will directly affect the result of the analysis and statistical inference, therefore,
choosing the best copula function is a very important task in our study. In this paper, we selected
Clayton, Frank and Gumbel–Hougaard copula as optimal copulas for determining the joint distribution
of drought duration and drought severity at all the meteorological stations. We used Kendall’s tau
coefficient to measure the association between drought duration and drought severity. The parameters
are used to the observe copula distributions due to confirming the best-fitted bivariate copula family
and to imitate the dependency between drought duration and severity. The results for Kendall’s
tau coefficient and parameter estimation for the 15 stations in Songnen grassland in northeastern
China are shown in Table 3. Furthermore, the copula families are determined by the RMSE and AIC
(Table 3). As shown in Table 3, it is obvious that the Frank copula distribution produces minimum
error and the lowest value of RMSE and AIC, which indicates that the Frank copula is the best-fitted
joint distribution of drought duration and drought severity. Figure 6a,b illustrates the surface plot and
contour lines of the joint cumulative probability for drought duration and drought severity using the
Frank copula respectively. According to the above analysis, we used the Frank copula function to link
the marginal distribution functions, gamma distribution and GEV distribution, which can effectively
describe the relevant joint distribution of drought duration and drought severity for Songnen grassland
in northeastern China.
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Table 3. The values of the Kendall’s tau coefficient, parameters, Root Mean Square Error (RMSE), and Akaike Information Criterion (AIC) for 15 meteorological
stations and three copula functions fitted to drought variables derived from drought events defined on the basis of SPEI-6.

NO. Station
Name

Kendall’s Tau
Coefficient

Copula Family

Clayton Frank G–H

Parameter RMSE AIC Parameter RMSE AIC Parameter RMSE AIC

1 Qian’an 0.6056 1.52 0.11 −298.26 6.10 0.10 −306.25 1.97 0.11 −299.80
2 Keshan 0.5656 1.33 0.12 −311.66 5.27 0.12 −319.93 1.82 0.12 −315.29
3 Qianguo 0.5205 1.14 0.12 −288.75 4.64 0.12 −293.91 1.76 0.12 −291.55
4 Bei’an 0.5814 1.29 0.13 −275.32 5.39 0.12 −283.40 1.80 0.13 −277.19
5 Shuangliao 0.6061 1.29 0.15 −282.58 6.04 0.14 −294.89 1.96 0.14 −288.87
6 Anda 0.5333 1.11 0.15 −282.58 5.01 0.14 −294.89 1.75 0.14 −288.87
7 Fuyu 0.5463 1.17 0.13 −297.52 5.05 0.13 −306.53 1.71 0.13 −298.81
8 Fuyu 0.5391 1.15 0.14 −286.19 4.76 0.13 −291.78 1.78 0.14 −288.66
9 Mingshui 0.6182 1.38 0.13 −276.18 6.17 0.12 −285.56 1.97 0.13 −278.88

10 Tailai 0.5652 1.19 0.14 −287.44 5.28 0.13 −297.86 1.81 0.13 −292.36
11 Baicheng 0.5581 1.16 0.14 −299.62 5.23 0.13 −311.62 1.86 0.13 −307.93
12 Tongyu 0.5939 1.32 0.14 −280.95 5.87 0.13 −290.24 2.00 0.13 −286.31
13 Changling 0.6035 1.32 0.16 −272.96 6.33 0.15 −286.02 1.90 0.16 −275.71
14 Changchun 0.5759 1.28 0.13 −285.69 5.57 0.12 −297.61 1.79 0.13 −289.20
15 Qiqiha’er 0.5764 1.26 0.13 −291.12 5.53 0.12 −301.44 1.91 0.12 −297.48
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4.4. Spatial Characteristics of Drought Duration and Severity for Different Return Periods

In this study, the two variables of drought duration and drought severity describe the drought
characteristics. Drought events with long duration and large severity have a serious effect on Songnen
grassland. The spatial distributions of the drought duration and drought severity of different drought
events corresponding to a return period of 5, 10, 20 and 50 years in Songnen grassland are shown in
Figures 7 and 8, respectively.

It was found that most areas in Songnen grassland are characterized by 5 year return period of
drought duration (Figure 7a). Also, the spatial distributions of a 10, 20, and 50 year return period of
drought duration in Songnen grassland are more similar. According to the spatial distributions of
a 5, 10, 20, and 50 year return period of drought severity, we have seen that the intensity of drought
severity decreases with an increasing return period, except for the severity of a 20 year return period of
drought severity. We also found that Songnen grassland is mostly dominated by the 20 year return
values of drought severity (Figure 8c).
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4.5. Spatial Distributions of Joint Return Periods and Secondary Return Period

We calculated the joint return periods and corresponding secondary return periods for 15
meteorological stations, analyzed the return periods for each stations’ droughts and conducted IDW
interpolation processing in order to obtain the spatial distribution of different joint return periods and
secondary return periods in Songnen grassland in northeastern China. In this paper, we considered two
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kinds of scenarios for the analysis of joint return periods and corresponding secondary return periods,
such as (1) drought duration was 6 months with a drought severity of 5.5; and drought duration was 9
months with a drought severity of 7.5. The spatial pattern of the return periods for the two scenarios is
shown in Figures 9 and 10, respectively.

The spatial pattern of the return periods of the joint return period of "or", joint return period of
"and" and the secondary return periods of "or" the joint return period with 6 months drought duration
and 5.5 drought severity for Songnen grassland in northeastern China for the first scenario is shown in
Figure 9a–c. Figure 9b,c indicate that a similar area of low joint return period (high risk of drought
area) characterized by a duration of 6 months connection with a drought severity of 5.5 can be found
in Bei’an county, Mingshui county, Qian’an county and Changling city, and also in Shuangliao city.
It also can be observed from Figure 9b,c that a similar area of high joint return period (low risk of
drought area) can be found in Keshan county, Qiqiha’er city and Taonan city. The high risk of drought
area which is located in Qiqiha’er city in the secondary return periods of "and" the joint return period
compared with the first return period of "or" the joint return period has expanded. As for the return
periods of drought with a duration of 6 months and drought severity of 5.5 (Figure 9a,c), larger regions,
when compared to the spatial pattern of "or” the joint return period and secondary return periods of
"or” the joint return period, have similar high and low risk center. Vandenberghe et al. [50] suggested
that the secondary return periods of "or” the joint return period compared with the first "or” the joint
return can be more realistic description of the risk of drought events. Therefore, the results of the
secondary return period of "or” the joint return period would be more accurate.
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The spatial pattern of the return periods including secondary return periods of a drought duration
of 9 months related to a higher drought severity of 7.5 of Songnen grassland in northeastern China
for the second scenario is shown in Figure 10a–c. Similar features for the spatial pattern of the return
periods of droughts related with longer durations and higher severities across Songnen Grassland
in northeastern China can be identified. It can be seen from Figure 10a,c that two similar high-risk
regions of drought characterized by drought duration of 9 months with drought a severity of 7.5 can
be found in Keshan county, Longjiang county and in Qiqiha’er city. However, the area of high-risk
regions located in Qiqiha’er city in the secondary return period of "or” was greater than the joint return
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period. A lower drought risk can be seen in Bei’an county, northeast of Gannan county and west of
Nahe city, and Changling county, Shuangliao city and also in Mingshui county.
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5. Conclusions and Discussion

Drought is the most severe disasters among the all natural disaster to affect pastoral areas like
Songnen grassland in northeastern China. Therefore, a deep and complete understanding and analysis
of the frequency of drought characteristics associated with drought severity and duration is essential
for drought risk analysis, which is an important part of risk management. In this paper, 15 daily
meteorological data stations covering the period 1960–2014 are analyzed using probability distribution
functions and copula. The drought events are characterized by severity and duration and defined by
the run theory and the calculated SPEI. Three Archimedean copulas were chosen to model the joint
distributions for the drought characteristics. The significant conclusions are expressed as follows:

(1) By evaluating the marginal distribution for drought variables and using the Kolmogorov–Smirnov
(K–S) goodness-of-fit test, we found that the drought duration is best investigated by gamma
distribution, while the drought severity is best investigated by the generalized extreme value
(GEV) distribution. This result obtained is different from the research carried out by Mirabbasi et
al. [51], who assume that gamma and exponential distributions are appropriate for the univariate
marginal distribution of drought variables. The result indicates that different drought indicators
and criterions for drought events may determine the different methods chosen for the marginal
distribution of drought variables [52].

(2) To investigate the joint performance of drought duration and drought severity, the Frank, G–H and
Clayton copulas were employed and their results were assessed by RMSE and AIC tests. The RMSE
and AIC tests were showed that Frank copula is the best performing model for modeling the joint
dependence structure of the drought duration and drought severity of the study region.

(3) The two kinds of the return periods of drought events are analyzed according to the two scenarios.
Then, the spatial distributions of two kinds of the return periods of drought events considering
different return periods are analyzed. In this study, we investigated two scenarios of drought
events. Results indicate that there is a higher risk of droughts in Keshan county, Longjiang county,
Qiqiha’er city, Taonan city and Baicheng city. There is a relatively lower risk of drought in Bei’an
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city, Mingquan county, Qinggang county and Qian’an county, and also in Changling county and
Shaungliao city.

By calculating the secondary return periods and considering all possible scenarios in this study,
we found that the secondary return periods is the best indicator for drought risk analysis. It is our
hope that the probabilistic property analysis can supply useful tools for natural resource management,
especially in arid and semi-arid regions. However, the risk analysis of the drought method used in this
study is for practical purposes for instructing drought risk management.
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